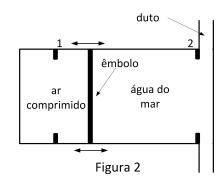

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO PROVA DE FÍSICA



CADERNO DE QUESTÕES

2021/2022

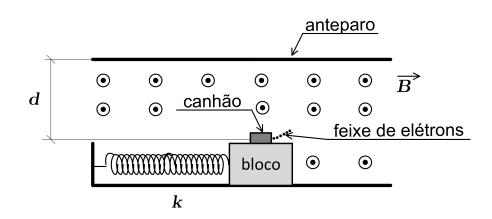
1ª QUESTÃO Valor: 1,0

O submarino, mostrado na Figura 1, está com os tanques de lastro vazios de água e, nestas condições, possui massa específica μ_s = 0,92 g/cm³, quando está sem tripulação e suprimentos. Na Figura 2, ilustra-se um dos dois tanques cilíndricos de lastro idênticos, que podem ser preenchidos com água do mar. Os êmbolos são acionados por motores elétricos, sendo movimentados entre os batentes, de modo a regular o volume de água do mar nesses tanques. Considere que o tanque de lastro esteja sem água com o êmbolo na posição 2 e com 59,5 m³ de água do mar com o êmbolo na posição 1, quando estiver cheio.

Dados:

- massa específica da água do mar: μ_a = 1,03 g/cm³;
- volume do submarino: V_s = 840 m³; e
- aceleração da gravidade: g = 10 m/s².

Observação:

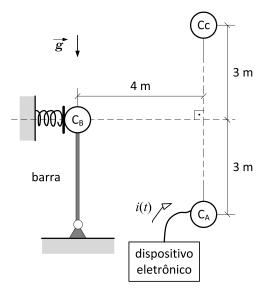

• os fluxos de água nos dutos dos tanques de lastro não interferem no movimento do submarino.

Admitindo que, em determinada missão, embarcaram tripulantes e suprimentos, perfazendo uma massa de 5880 kg, determine:

- a) a porcentagem do volume do submarino que ficará submersa após o embarque, supondo os tanques de lastro com os êmbolos na posição 2;
- b) a massa total de água do mar, em kg, que deverá ser introduzida nos tanques de lastro para que ocorra a completa submersão do submarino;
- c) os máximos módulos das acelerações verticais, em m/s², para emergir e para submergir o submarino, desconsiderando a força de resistência da água do mar e estando o submarino estabilizado em determinada profundidade.

2ª QUESTÃO

Valor: 1,0


Na figura, encontra-se ilustrado um experimento, em que o canhão preso ao bloco efetua um movimento harmônico simples (MHS) na região sujeita ao campo magnético constante, disparando horizontalmente e continuamente um feixe de elétrons. Nele, observou-se que, nos momentos em que o bloco está com a maior energia cinética, ora os elétrons colidem ortogonalmente contra o anteparo, ora colidem frontalmente contra a traseira do canhão, após tangenciarem o anteparo.

Dados:

- velocidade relativa de disparo do feixe de elétrons em relação ao canhão: v;
- constante elástica da mola: k;
- massa do conjunto bloco + canhão: M;
- carga do elétron: -e;
- massa do elétron: m_e ;
- distância entre o canhão e o anteparo: d.

Determine:

- a) a amplitude de oscilação do bloco para que o experimento seja viável, em função de $v,\,M$ e k;
- b) o ângulo de impacto entre o anteparo e os elétrons disparados quando o bloco estiver com velocidade nula;
- c) a densidade de fluxo magnético do campo \vec{B} , para que o experimento seja viável, em função de e, m_e, v e d;
- d) os possíveis valores de d em relação a $v,\,M$ e k impostos pelo tempo de viagem dos elétrons até o choque frontal com a traseira do canhão.

i(t) [A] 5 0 5Figura 2

Figura 1

Considere um meio hipotético onde os corpos C_A , C_B e C_C , todos de massa m, estão fixados no espaço conforme mostra a Figura 1 e, inicialmente, carregados eletricamente com cargas $Q_A = +5$ C; $Q_B = -5$ C; e $Q_C = +30$ C, respectivamente. O corpo C_B está na extremidade de uma barra feita com material isolante. Um dispositivo eletrônico controla a quantidade de cargas elétricas positivas em C_A , por meio de injeção de corrente no corpo.

Dados:

- aceleração da gravidade: $g = 10 \text{ m/s}^2$; e
- massa dos corpos: m = 0.2 kg.

Considerações:

- o fluxo positivo de corrente do gráfico da Figura 2 indica que cargas positivas são injetadas em C_A; e
- a mola tem por objetivo manter a barra sempre na posição vertical.

Diante do exposto, determine:

a) a constante eletrostática do meio, sabendo que nas condições iniciais, a força de compressão na barra é 4 N.

Considere agora que o dispositivo eletrônico comece a operar, injetando corrente no corpo C_A (conforme gráfico da Figura 2) até que a tração na barra seja 0 (zero). Para as novas condições de funcionamento, determine:

- b) o novo valor da carga Q_{A} ; e
- c) o tempo necessário para o sistema chegar a este novo ponto de operação.

4º QUESTÃO Valor: 1,0

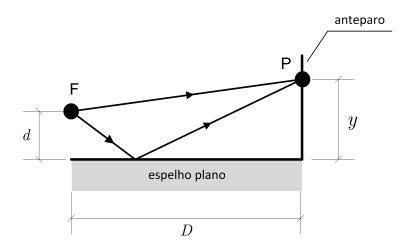
O interior de um refrigerador hospitalar para armazenagem de medicamentos deve ser continuamente mantido a uma temperatura de 2 °C. Este equipamento possui três portas envidraçadas para acesso aos fármacos, sendo por isso afetado pelo calor ambiente. Além disso, estima-se que os outros ganhos térmicos pelas demais superfícies são equivalentes a 20% daquele associado ao total das três portas.

A superintendência do hospital contratou uma empresa para elaborar o projeto de um sistema alternativo de fornecimento de energia elétrica, em caso de interrupção do serviço pela concessionária local. Após estudo, o técnico responsável pelo projeto afirmou que:

"A potência de acionamento do refrigerador hospitalar é suprida com folga por um motor térmico operando em um ciclo termodinâmico que possui as seguintes características: o motor recebe energia de uma fonte, cuja temperatura é 327°C, e rejeita energia para outras duas fontes. Uma dessas fontes se encontra à temperatura externa ao refrigerador e recebe 450 W, enquanto a outra deve estar a uma temperatura de 127°C, recebendo 300 W."

Dados:

- condutividade térmica do vidro: 0,85 W.(m.°C)⁻¹;
- espessura do vidro: 25 mm;
- temperatura do ambiente externo ao refrigerador: 27 °C;
- coeficiente de desempenho do refrigerador: $\frac{3}{11}$ do máximo admissível do ciclo de Carnot associado; e
- dimensões de cada porta de vidro: 2 m (altura) x 50 cm (largura).


A partir de uma análise termodinâmica da situação, explique, de forma justificada, se a afirmação do técnico é correta.

Sa QUESTÃO Valor: 1,0 40 m 20 m 40 m 20 m 40 m engates (ver detalhe) mola Engate C: Engate D:

A ponte acima é escorada por quatro apoios verticais (A, B, E e F) e por dois engates (C e D), que permitem a transmissão de esforços verticais e horizontais. Um veículo de 100 kN atravessa essa ponte de peso linear constante de 10 kN/m. Se nos apoios B e E são instaladas molas elásticas com k = 9000 kN/m, calcule a máxima contração que surge nas molas, enquanto o veículo atravessa o trecho central CD da ponte.

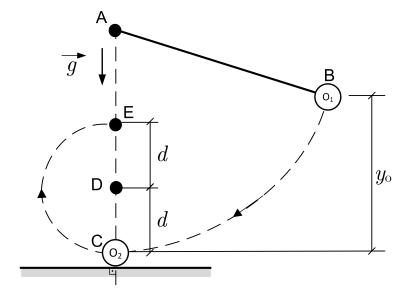
Observações:

- o veículo é um objeto pontual;
- desconsidere eventuais forças horizontais que surjam na ponte; e
- considere que as deformações das molas sejam muito menores do que o comprimento da ponte.

No espelho de Lloyd, observa-se em um anteparo a interferência entre a luz que vai da fonte puntiforme F a um ponto P do anteparo e a luz que vai de F a P, após ser refletida num espelho plano. A distância de F ao espelho é d e de F ao anteparo é D.

Dados:

- comprimento de onda da luz: λ ; e
- $D \gg d$.


Consideração:

 $\overline{\bullet (1+u)^{\alpha}} \approx 1 + \alpha u$, se $|u| \ll 1$ (se necessário).

Diante do exposto, determine o menor valor de y, indicado na figura, para que no ponto P haja um máximo de interferência construtiva.

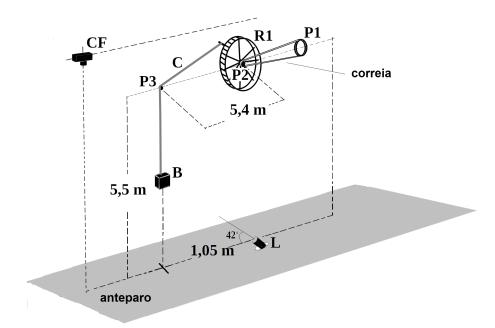
7º QUESTÃO

Valor: 1,0

Um objeto O_1 , preso por um fio ideal, é solto do ponto B. Ao atingir o ponto C, ele se choca de forma totalmente inelástica, colando no objeto O_2 , conforme ilustrado na figura.

Após o choque, o fio encontra o ponto D, que passa a ser o novo centro do movimento pendular do conjunto $O_1 + O_2$.

Dados:


- aceleração da gravidade: g;
- massa de $O_1 = m_1$; e
- massa de $O_2 = m_2$.

Observações:

- · considere que os objetos são partículas; e
- desprezar os atritos e a resistência do ar.

Diante do exposto, determine:

- a) a distância y_0 mínima indicada na figura, em função de d, m_1 , m_2 e g, de modo que o conjunto consiga atingir o ponto E;
- b) a velocidade do conjunto O₁ + O₂ no ponto E, nas condições do item a; e
- c) a tração do fio no ponto C, imediatamente após o choque, nas condições do item a.

Seja o sistema composto por polias P1, P2 e P3, uma roda R1, uma corda inextensível C, um cubo B, um laser L e uma câmera fotográfica CF, dispostos conforme a figura acima. Nesse sistema, a face inferior do cubo B é reflexiva e pode ser considerada um espelho plano ideal. Tanto as polias quanto a roda estão fixadas em suas posições, de tal modo que podem girar livremente no plano que contém seus centros e a corda C. As polias P1 e P2 estão ligadas por uma correia, que corre sem deslizar, e a polia P2 e a roda R1 são concêntricas. A câmera fotográfica CF registra fotos do anteparo, a uma taxa de cinco fotos por segundo. Sabe-se que a velocidade angular da polia P1 só pode assumir valores inteiros de 1 até 10 rad/s, e que a primeira foto mostra um ponto luminoso.

Dados:

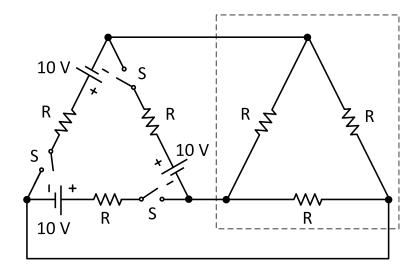
• raio de P1: 40 cm;

• raio de P2: 3,14 cm;

raio de P3: desprezível;

• raio de R1: 90 cm;

• comprimento de C: 9 m;

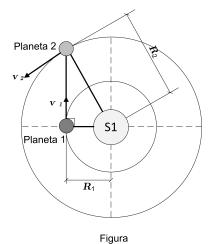

· aresta do cubo B: 10 cm;

• $tg(42^{\circ}) = 0.90$;

• $\pi = 3.14$; e

• $\pi^2 = 10$.

Determine quais valores de velocidade angular da polia P1, em rad/s, farão com que todas as fotos tiradas pela câmara sejam iguais.


A figura acima apresenta um circuito composto por três baterias de 10 V, seis resistores idênticos $\it R$ e três chaves S.

Ao fechar as três chaves simultaneamente, após 20 segundos, o circuito consome 20 kJ de energia. Considerando sempre a topologia do circuito original para cada pedido, determine:

- a) o valor da resistência de cada resistor R, em Ω ;
- b) a potência dissipada no circuito, em W, se 01 (uma) das baterias tiver seus terminais curto-circuitados; e
- c) a potência dissipada no circuito, em W, se os três resistores da região tracejada do circuito tiverem seus terminais abertos.

10º QUESTÃO

Valor: 1,0

Cor	Comprimento de Onda [nm]
violeta	~ 380 - 450
azul	~ 450 - 485
ciano	~ 485 - 500
verde	~ 500 - 565
amarelo	~ 565 - 590
laranja	~ 590 - 625
vermelho	~ 625 - 740

Tabela

Um sistema planetário hipotético é composto por uma estrela (S1) e dois planetas com órbitas elípticas de excentricidade tão pequenas que são aproximadas por circunferências no mesmo plano. Seus sentidos de translação são opostos, tal que o Planeta 1 (P1) orbita no sentido horário, enquanto o Planeta 2 (P2) no sentido anti-horário.

P2 possui partículas de óxido de ferro em suspensão na sua atmosfera. Essas partículas absorvem a luz de S1 e irradiam uma luz colorida, cujos fótons possuem energia E. O povo de P1 é bastante desenvolvido tecnologicamente e decide lançar uma espaçonave, tangencialmente à sua própria órbita, para visitar P2. Para isso, de forma que chegue ao ponto futuro de P2, mantém uma trajetória retilínea, conforme mostra a figura.

Dados:

- Planeta 1: distância orbital $R_{\scriptscriptstyle 1}$; velocidade orbital escalar $v_{\scriptscriptstyle 1}=$ 60 $\sqrt{2}$ km/s;
- Planeta 2: distância orbital R_2 = 2 x R_1 ;
- energia dos fótons: E= 3,125 \times 10⁻¹⁹ J;
- espaçonave: gera uma aceleração, a partir de P_1 , de $a_e = 180\sqrt{2}$ m/s², durante 6,4 horas. Depois disso, mantém velocidade constante até se aproximar de P2;
- velocidade da luz no vácuo: $c=3\times 10^5~\mathrm{km/s};$ e
- constante de Planck: h= 6,63 imes 10 $^{-34}$ J.s.

Diante do exposto, determine:

- a) a velocidade orbital escalar de P2 (v_2), em km/s;
- b) a cor da luz emitida por P2, observada de P1, quando ambos os planetas estiverem alinhados com S1 (use a tabela e desconsidere a possibilidade de eclipse); e
- c) a cor da luz de P2, observada da espaçonave, quando estiver próxima de P2.

RASCU	JNHO

RASCU	JNHO

F	RASCUNHO

RASCUNHO

RASCU	JNHO

F	RASCUNHO

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO QUÍMICA

CADERNO DE QUESTÕES

2021/2022

FOLHA DE DADOS

Considere:

- 1 S (siemens) = 1 ohm^{-1} ;
- Constante de Faraday = 96.500 C.mol⁻¹;
- Número de Avogadro = 6,0 x 10²³;
- Constante universal dos gases ideais:

$$R = 2.0 \text{ cal.}(\text{mol.K})^{-1} = 8.3 \text{ J.}(\text{mol.K})^{-1} = 8.2.10^{-2} \text{ atm.L.}(\text{mol.K})^{-1}$$
;

- 1 atm = 101.325 Pa = 101,325 kPa = 1,01325 bar = 760 mmHg;
- $2^{1/2} = 1.4$;
- $2^{\frac{65}{30,1}} = 2^{2,159} = 4,466$;
- Capacidade calorífica molar média à pressão constante (\overline{C}_P), no intervalo de 0 a $-10~^\circ C$:

$$H_2O(I)$$
: $\overline{C}_P = 76.0 \text{ J.(mol.K)}^{-1}$;

$$H_2O$$
 (s): $\overline{C}_P = 38,0 \text{ J.(mol.K)}^{-1}$;

• Entalpia molar de fusão da água, a 1,0 atm:

$$H_{m, fusão} = 6.0 \text{ kJ.mol}^{-1};$$

• Composição percentual do ar atmosférico = 79,0% de $N_2(g)$ e 21,0% de $O_2(g)$

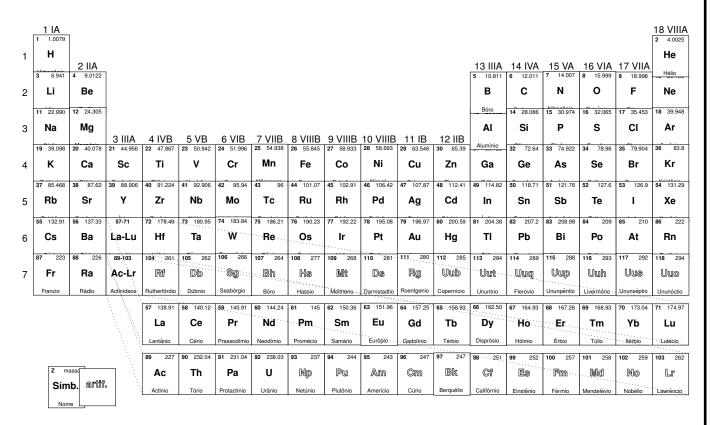
Entalpias-padrão de formação a 25°C:

Substância Química	$C_8H_{18}(g)$	$H_2O(g)$	$H_2O(I)$	$CO_2(g)$	CO(g)
$\Delta H_f^\circ(kJ.mol^{\text{-}1})$	-208,45	-241,82	-285,83	-393,51	-110,53

Capacidade calorífica molar:

Substância Química	$N_2(g)$	O ₂ (g)	$H_2O(g)$	CO ₂ (g)	CO(g)
\overline{C}_{P} (J.mol ⁻¹ .K ⁻¹)	29,13	29,36	33,58	37,11	29,14

FOLHA DE DADOS (CONTINUAÇÃO)


Tabela de logaritmos:

Х	1,038	2	3	4	5	6	7	10	13	14	15
log(x)	0,02	0,30	0,48	0,60	0,70	0,79	0,85	1	1,11	1,15	1,18
ln(x)	0,04	0,70	1,10	1,39	1,60	1,79	1,95	2,30	2,57	2,64	2,71

Potencial padrão:

Oxidante	F ₂	Ce ⁴⁺	Au ³⁺	Cl ₂	Fe ³⁺	H ₃ O ⁺	Ni ²⁺	Na ⁺	Li+
$E^0(V)$	+ 2,87	+ 1,61	+ 1,50	+ 1,36	+ 0,77	0,00	- 0,25	-2,71	- 3,05
Redutor	F ⁻	Ce ³⁺	Au	CI ⁻	Fe ²⁺	$H_2(g)$	Ni	Na	Li

Tabela Periódica dos Elementos Químicos:

Fonte: adapatada do site https://acervodigital.ufpr.br/handle/1884/40332

1ª QUESTÃO Valor: 1,0

Considere a reação entre acetato de etila e hidróxido de sódio em meio aquoso como sendo irreversível. Uma forma simples de estudar a cinética dessa reação é acompanhar, com o uso de um condutivímetro, a condutividade do meio reacional, dada pelo inverso da resistividade e geralmente denotada por Ψ , em S.cm⁻¹. Tal condutividade é relacionada, quantitativamente, à concentração das espécies iônicas, Na⁺, OH⁻ e acetato, em solução, cujas condutividades molares, em S.L.(cm.mol)⁻¹, serão denotadas aqui, respectivamente, por λ_N , λ_0 e λ_A . A condutividade de um meio é dada, portanto, pela soma dos produtos entre a concentração de cada espécie iônica e sua correspondente condutividade.

Foi preparada uma mistura contendo, inicialmente, C_0 mol. L^{-1} de hidróxido de sódio e acetato de etila em ligeiro excesso. Determine uma expressão para a concentração do íon acetato em função de Ψ , λ_N , λ_0 , λ_A e C_0 .

2º QUESTÃO Valor: 1,0

Uma célula eletrolítica dotada de eletrodos de platina é preenchida com 1 L de uma solução 4 M de NaCl puro em água bidestilada. Em seguida, faz-se percorrer pela mesma, por 5 horas, 21 minutos e 40 segundos, uma corrente de 5 A, ocorrendo desprendimento de cloro e hidrogênio. Decorrido o tempo mencionado, a corrente é desligada e a solução remanescente é evaporada, obtendo-se um resíduo sólido. Calcule a massa do resíduo obtido.

3ª QUESTÃO Valor: 1,0

Sob determinadas condições, a água pode ser super-resfriada, ou seja, permanecer no estado líquido em temperaturas inferiores ao seu ponto de congelamento, em uma situação termodinamicamente instável. Considere um processo em que 5,0 mol de água super-resfriada a –10°C e 1,0 atm sejam convertidos em gelo à mesma temperatura. Determine a variação de entropia:

- a) do sistema;
- b) na vizinhança; e
- c) do universo.

4º QUESTÃO Valor: 1,0

Os elementos do 2º e 3º períodos da tabela periódica apresentam desvios da tendência em suas curvas da energia de ionização em função do número atômico. Com relação a esses elementos:

- a) esboce qualitativamente o gráfico da energia de ionização em função do número atômico; e
- b) explique esses desvios de forma sucinta, baseado na estrutura eletrônica e no preenchimento dos orbitais atômicos.

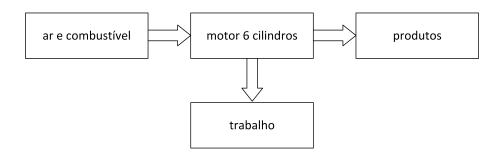
5ª QUESTÃO Valor: 1,0

Suponha um sólido metálico formado por um único elemento que apresenta uma estrutura de empacotamento cúbica de corpo centrado à pressão atmosférica. Ao ser comprimido, esse sólido adota uma estrutura cúbica de face centrada. Considerando os átomos como esferas rígidas, calcule a razão entre as densidades do sólido antes e depois da compressão.

6º QUESTÃO Valor: 1,0

A intensidade das emissões radioativas pode ser expressa em curie (Ci), unidade definida como 3,7x10¹⁰ desintegrações nucleares por segundo. Considere um tanque que armazena 50.000 L de um rejeito radioativo aquoso desde 1945, o qual contém o isótopo ¹³⁷Cs, cuja cinética de desintegração radioativa é considerada como de primeira ordem. A meia vida do ¹³⁷Cs é de 30,1 anos e sua radioatividade específica é de 86,6 Ci/g. Se em 2010 a concentração de ¹³⁷Cs neste rejeito aquoso era de 1,155x10⁻³ g/L, determine:

- a) a fração percentual em massa de 137 Cs que deverá ter decaído para que o nível de radioatividade a ele relacionada seja de $1,0x10^{-3}$ Ci/L; e
- b) a concentração em g/L de ¹³⁷Cs no tanque quando o rejeito foi inicialmente estocado, considerando que o volume do rejeito tenha sido constante ao longo do tempo.


7º QUESTÃO Valor: 1,0

Escreva a fórmula estrutural plana do produto majoritário da mononitração, via substituição eletrofílica aromática, para cada reagente indicado abaixo:

- a) ácido p-toluico (ácido 4-metilbenzoico);
- b) p-cresol (4-metilfenol);
- c) p-tolunitrila (4-metilbenzonitrila);
- d) m-xileno (1,3-dimetilbenzeno); e
- e) 2,6-difluoroacetanilida (N-(2,6-difluorofenil) etanamida);

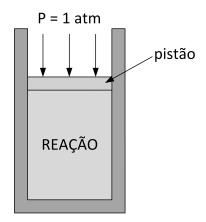
8ª QUESTÃO Valor: 1,0

Um motor de 6 cilindros e volume total de 5.700 cm³, utilizado em viaturas leves e blindadas, consome 0,5g do combustível gasoso de composição média C₈H₁₈, em cada cilindro, por segundo de operação.

Considerações:

- o ciclo termodinâmico do motor compreende o funcionamento em 4 tempos: admissão, compressão, combustão e exaustão (escape);
- o motor executa 10 ciclos por segundo, ou seja, a mistura de ar e combustível enche os cilindros e depois é comprimida 10 vezes por segundo;
- a mistura ar e combustível é introduzida à temperatura de 100 °C, até que a pressão seja de 1atm em cada cilindro;
- 20,0% da quantidade de combustível sofre combustão incompleta, sendo convertida em CO(g);
- 80,0% da quantidade de combustível sofre combustão completa, sendo convertida em CO₂(g);
- a mistura de ar e combustível comporta-se como gás ideal;
- as capacidades caloríficas molares são independentes da temperatura; e
- as entalpias de formação a 25 °C.

Determine:


- a) a vazão da entrada de ar no motor, em m³/s; e
- b) a composição percentual molar dos produtos e a temperatura de combustão, em K.

9ª QUESTÃO

Valor: 1,0

Na figura abaixo, apresenta-se um conjunto cilindro-pistão, onde o peso do pistão é desprezível, em que ocorre a seguinte reação do óxido de níquel (II) à temperatura constante:

$$NiO(s) + CO(s) \rightleftharpoons Ni(s) + CO_2(g)$$

Para a manutenção da temperatura constante até a situação de equilíbrio, devem ser retirados do meio reacional 16,10 kJ de energia por mol de óxido de níquel reagido, na forma de calor. Sabese que a constante de equilíbrio para a reação é $K_p = 500$ e que, na temperatura de reação, as entropias padrão são:

- $S_0(NiO) = 38,10 \text{ J.}(mol.K)^{-1};$
- $S_0(Ni) = 30,56 \text{ J.}(mol.K)^{-1};$
- $S_0(CO) = 251,0 \text{ J.}(\text{mol.K})^{-1}; e$
- $S_0(CO_2) = 296,0 \text{ J.}(\text{mol.K})^{-1}.$

Com base nas informações fornecidas e considerando que os gases se comportam idealmente, determine a temperatura na qual a reação foi conduzida.

Estabeleça a relação entre as estruturas de cada par abaixo, identificando-as como enantiômeros, diastereoisômeros, isômeros constitucionais ou representações diferentes de um mesmo composto.

a)

е

b)

е

c)

CI

d)

e

e)

-

R	RASCUNHO

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO

MATEMÁTICA

CADERNO DE QUESTÕES

2021/2022

1º QUESTÃO Valor: 1,0

Seis irmãos conversavam quando um deles, Matias, enunciou: a soma das idades de todos nós é cinco vezes a minha idade atual e sou seis anos mais novo que Sófocles. Quando Sófocles tiver três vezes a minha idade atual, constataremos que:

- a soma da minha idade com a de Dâmocles será igual à soma da idade atual dos irmãos de César:
 - a idade de Erastóstenes será três vezes a idade dele atual; e
 - a idade do Lutero será duas vezes a idade atual do Sófocles, mais um ano.

Diante do exposto, qual é a soma das idades atuais de Sófocles e Matias?

2º QUESTÃO Valor: 1,0

Suponha que a e b são raízes reais e diferentes da equação $4x^2-4tx-1=0\ (t\in\mathbb{R}).$ O intervalo [a,b] é o domínio da função $f(x)=\frac{2x-t}{x^2+1}.$ Seja $g(t)=\max f(x)-\min f(x).$ Determine g(0).

3ª QUESTÃO Valor: 1,0

Em um triângulo de vértices $A(0,0),\ B(2,4)$ e C(6,0), toma-se um ponto variável M sobre o lado AB. Desse ponto, traça-se a perpendicular ao lado AC que intercepta em Q.

Identifique o lugar geométrico descrito pelo ponto de interseção das retas BQ e CM e escreva a sua equação.

4ª QUESTÃO Valor: 1,0

Seja um tetraedro regular ABCD de aresta a e o ponto Q médio de AB. O ponto P sobre a aresta AB, entre Q e A, é projetado nas arestas AC e AD, sobre os pontos M e M', respectivamente, e também nas arestas BC e BD, sobre os pontos N e N', respectivamente. O plano MM'NN' divide o tetraedro em dois volumes com razão de 1 para 4. Determine QP em função de a.

5ª QUESTÃO

Valor: 1,0

Considere o sistema a seguir:

$$\begin{cases} 3x + 2y - z = ky\\ (1-k)x - y + 4z = 0\\ 2x + y - kz = z \end{cases}$$

Determine o menor valor da constante real k que torna o sistema indeterminado. Para esse valor de k, encontre a solução x,y,z do sistema acima que minimiza o valor de $(x-z)^2 + e^{x+y} - 4|x| - 2y$.

6ª QUESTÃO Valor: 1,0

Determine o subconjunto de $\mathbb R$ que corresponde à solução da equação:

$$4^{\log_2 \operatorname{sen}(x)} + \log_4 2^{\cos(2x)} + \frac{x}{\sqrt{4x^2}} = 0.$$

7º QUESTÃO Valor: 1,0

Sejam os pontos a e b, no plano complexo, representados pelos números a=9+xi e b=y+3i, onde i é a unidade imaginária tal que $i^2=-1$. O ponto a é a rotação de 30° do ponto b em torno da origem no sentido anti-horário. Determine o valor do produto xy.

8ª QUESTÃO Valor: 1,0

Em uma sala com 11 estudantes, um professor decidiu aplicar um trabalho dividindo aleatoriamente a turma em três grupos de 3 estudantes e um grupo de 2 estudantes. Sabendo que na turma há um casal, qual é a probabilidade de que o mesmo faça o trabalho junto?

9º QUESTÃO Valor: 1,0

Sabendo-se que $\frac{\sin^4 \alpha}{a} + \frac{\cos^4 \alpha}{b} = \frac{1}{a+b}$ com $a \neq 0, b \neq 0$ e $a+b \neq 0$, determine $\frac{\sin^8 \alpha}{a^3} + \frac{\cos^8 \alpha}{b^3}$ em função de a e b somente.

10^a QUESTÃO Valor: 1,0

Seja um triângulo acutângulo $\triangle ABC$ onde h_B e h_C são as alturas dos vértices B e C, respectivamente, e $\overline{BC}=a$. Sabendo-se que $\frac{h_Bh_C}{a^2}=\frac{\sqrt{6}}{4}$ e $\cos\widehat{A}+\cos\widehat{B}\cos\widehat{C}=\frac{p}{q\sqrt{m}}$, calcule p+q+m.

Dados:

- p, q e m são números naturais;
- p e q são primos entre si; e
- m é o menor possível.